Listing Fibonacci, Faktorial & Menara Hanoi
FAKTORIAL
Dalam matematika, faktorial dari bilangan asli n adalah hasil perkalian antara bilangan bulat positif yang kurang dari atau sama dengan n. Faktorial ditulis sebagai n! dan disebut n faktorial.
Sebagai contoh, 7! adalah bernilai 7×6×5×4×3×2×1 = 5040. Berikut ini adalah daftar sejumlah faktorial :
0! = 1 1! = 1 2! = 2 3! = 6 4! = 24 5! = 120 6! = 720 7! = 5040 8! = 40320 9! = 362880 10! = 3628800 11! = 39916800 12! = 479001600
Listing Faktorial
FIBONACCI
Dalam matematika, bilangan Fibonacci adalah barisan yang didefinisikan secara rekursif sebagai berikut:
Penjelasan: barisan ini berawal dari 0 dan 1, kemudian angka berikutnya didapat dengan cara menambahkan kedua bilangan yang berurutan sebelumnya. Dengan aturan ini, maka barisan bilangan Fibonaccci yang pertama adalah:
Barisan bilangan Fibonacci dapat dinyatakan sebagai berikut:
dengan
- Fn adalah bilangan Fibonacci ke-n
- x1 dan x2 adalah penyelesaian persamaan x2 – x – 1 = 0.
Perbandingan antara Fn+1 dengan Fn hampir selalu sama untuk sebarang nilai n dan mulai nilai n tertentu, perbandingan ini nilainya tetap. Perbandingan itu disebut Golden Ratio yang nilainya mendekati 1,618.
Listing Fibonacci
MENARA HANOI
Menara Hanoi adalah sebuah permainan matematis atau teka-teki. Permainan ini terdiri dari tiga tiang dan sejumlah cakram dengan ukuran berbeda-beda yang bisa dimasukkan ke tiang mana saja. Permainan dimulai dengan cakram-cakram yang tertumpuk rapi berurutan berdasarkan ukurannya dalam salah satu tiang, cakram terkecil diletakkan teratas, sehingga membentuk kerucut.
Tujuan dari teka-teki ini adalah untuk memindahkan seluruh tumpukan ke tiang yang lain, mengikuti aturan berikut:
- Hanya satu cakram yang boleh dipindahkan dalam satu waktu.
- Setiap perpindahan berupa pengambilan cakram teratas dari satu tiang dan memasukkannya ke tiang lain, di atas cakram lain yang mungkin sudah ada di tiang tersebut.
- Tidak boleh meletakkan cakram di atas cakram lain yang lebih kecil.